
STATE MACHINES
copyright © 2008 Sergio Masci

All rights reserved

(draft revision date 2008-05-16)



Table of Contents
Introduction to State Diagrams                                                                                                                 .............................................................................................................  3  
Developing a state machine                                                                                                                      ..................................................................................................................  6  
Implementing state machines in software                                                                                                ............................................................................................  9  

Using groups of conditional statements                                                                                               ...........................................................................................  9  
Table driven state machine                                                                                                                ............................................................................................................  12  
Benefits of using a small core dispatcher                                                                                          ......................................................................................  14  
Multiple interacting state machines                                                                                                   ...............................................................................................  15  
Table driven inefficiencies                                                                                                                 .............................................................................................................  17  
Complete example of a table driven state machine                                                                           .......................................................................  18  

Critical event order                                                                                                                                 .............................................................................................................................  21  
Step by step debugging using a state diagram                                                                                        ....................................................................................  30  

Animation of a real state machine trace                                                                                             .........................................................................................  35  
Reducing multiple states to a single state                                                                                               ...........................................................................................  36  
The event queue                                                                                                                                      ..................................................................................................................................  38  

Generating events during an interrupt                                                                                               ...........................................................................................  44  
Decreasing interrupt overheads                                                                                                         .....................................................................................................  48  

Multiple interacting state machines                                                                                                        ....................................................................................................  49  
Overall system design                                                                                                                        ....................................................................................................................  50  
CPU view                                                                                                                                           .......................................................................................................................................  50  
CPU component breakdown                                                                                                              ..........................................................................................................  51  
Intra CPU mode interaction                                                                                                               ..........................................................................................................  52  
part 5                                                                                                                                                  ..............................................................................................................................................  53  
Mode A / B Interaction                                                                                                                       ...................................................................................................................  53  
I/O Component Description                                                                                                               ...........................................................................................................  55  
VCLK Component Description                                                                                                         .....................................................................................................  56  
I2C Component Description                                                                                                              ..........................................................................................................  57  
Animated Message Flow Description                                                                                                ............................................................................................  58  
Mode B description                                                                                                                            ........................................................................................................................  59  

Appendix 1                                                                                                                                             .........................................................................................................................................  75  
Appendix 2                                                                                                                                             .........................................................................................................................................  76  
Appendix 3                                                                                                                                             .........................................................................................................................................  77  
Appendix 4                                                                                                                                             .........................................................................................................................................  78  
TBD                                                                                                                                                        ....................................................................................................................................................  91  



Introduction to State Diagrams

Fig 1 shows two sets of elevator doors labelled S1 and S2. S1 shows the doors in a closed state 
while set S2 shows the same doors in an open state. Although this diagram shows two sets of doors 
it is actually only showing one set of doors in two different states (closed or open). The doors can 
only be in one of the two states at any one time.

Fig 2 is a simplified representation of Fig 1. It shows the same two states S1 and S2 but does not 
bother trying to show any detail about those 2 states. It just shows that there are 2 states.

page 3

Fig 1: 

S1 S2

Fig 2: 

S1 S2



Fig 3 shows the relationship between states S1 and S2 in terms of events E1 and E2. Here E1 is  the 
open event and E2 is the close event. Note that E1 points from S1 to S2. This means that event E1 
causes a transition from state S1 to S2 if the system is in state S1 when event E1 arrives. Event E1 
has no effect when the system is in state S2. Likewise E2 points from S2 to S1 meaning that event 
E2 causes a transition from state S2 to S1 if the system is in state S2 when event E2 arrives. Event 
E2 has no effect when the system is in state S1. So the state diagram Fig 3 shows that when the 
elevator doors are closed, an open event causes them to go to the open state and when the doors are 
open a close event causes them to go to the close state. An open event is ignored if the doors are 
already open and a close event is ignored if the doors are already closed.

For completeness we would need to describe all the states and events shown on the state diagram.

S1 = doors closed
S2 = doors open

E1 = open
E2 = close

This is the essence of a state diagram. It simply shows all the possible states that a system can be in 
and all the events that can cause the system to change from one state to another.

NOTE although a state diagram shows all the possible states a system can be in, the system can 
only be in one state at any one time.

page 4

Fig 3: 

S1 S2

E1

E2



Fig 4 shows a state S3 with an event E10 looping back to itself. This is valid. This kind of transition 
(a state acknowledging an event and staying in the same state) might be used to count the number of 
events of a specific type and possibly generate another event when a certain number is reached.

Fig 5 shows a state S3 with an event E10 leading to nowhere. This is invalid. An event must always 
be drawn with a source state and destination state.

Fig 6 shows a state S3 with an event E11 coming from nowhere. This is invalid. An event must 
always be drawn with a source state and destination state.

page 5

Fig 4: 

S3

E10

Fig 5: 

S3

E10

Fig 6: 

S3
E11



Developing a state machine
Here we will develop a system for opening an elevator door using a switch.

We start with a state diagram showing the possible states of the elevator door (Fig 7).

S1 = door closed
S2 = door opened

Now we need to add something that will cause the state to change. Let us say that pressing a switch 
is an event. This event will cause the state to change (Fig 8).

So now we have

S1 = door closed
S2 = door opened

E1 = switch pressed

But elevator doors don't work like this in reality. Pressing a switch does not cause the doors to 
instantaneously be open – they take time to open. So we need to revise our state diagram (Fig 9).

page 6

Fig 7: 

S1 S2

Fig 8: 

S1 S2

E1



So now we have

S1 = door closed
S1a = door opening
S2 = door opened

E1 = switch pressed 

But we now have no way of getting from S1a to S2 – we need another event. This event will be 
when the doors are fully opened (Fig 10).

So now we have

S1 = door closed
S1a = door opening
S2 = door opened

E1 = switch pressed 
E2 = doors are fully opened

page 7

Fig 9: 

S1 S1a S2

E1

Fig 10: 

S1 S1a S2

E1 E2



Great, so now we have the doors opening in response to a switch press. Looking at the state 
diagram we can see that there is no path from the doors being open to the doors being closed. This 
state diagram tells us that there is a fault with our system – we need a way to close the doors. We 
need to be able to press the switch again and for the doors to close in response to this.

We already have experience of opening the doors with a switch press and we have seen that we 
need a separate door opening state. The same is true for the door closing – we need  a separate door 
closing state (Fig 11).

So now we have

S1 = door closed
S1a = door opening
S2 = door opened
S2a = door closing

E1 = switch pressed 
E2 = doors are fully opened
E3 = switch pressed 
E4 = doors are fully closed

Now you may be wondering how you can press the switch twice without releasing it. The answer is 
you can't. So how does this affect the state machine. Actually even though the switch may generate 
a switch released event it doesn't matter because the state machine ignores that event (any event not 
shown for a state is ignored by default). So yes, a real user would need to release the switch before 
he could press it again but that is already accounted for by the state machine as it is drawn here. 

page 8

Fig 11: 

S1 S1a S2

E1 E2

S2a E3E4



Implementing state machines in software

Using groups of conditional statements

There are several ways to code a state machine. The simplest is to use a variable to hold the state ID 
and conditional statements to execute the code corresponding to that state.

e.g.

enum { STATE_DOOR_CLOSED,
STATE_DOOR_OPENING,
STATE_DOOR_OPEN,
STATE_DOOR_CLOSING };

state = STATE_DOOR_CLOSED;

while (1)
{

if (state == STATE_DOOR_CLOSED)
{

if ((PORTA & 1) != 0)
{

// switch pressed
state = STATE_DOOR_OPENING;

// turn on motor to open doors
PORTB = 1;

}
}
else
if (state == STATE_DOOR_OPENING)
{

if ((PORTA & 2) != 0)
{

// door sensor indicates doors fully open
state = STATE_DOOR_OPEN;

// turn off motor to open doors
PORTB = 0;

}
}
else
if (state == STATE_DOOR_OPEN)
{

if ((PORTA & 1) != 0)
{

// switch pressed
state = STATE_DOOR_CLOSING;

// turn on motor to close doors
PORTB = 2;

}
}
else
if (state == STATE_DOOR_CLOSING)
{

if ((PORTA & 4) != 0)
{

// door sensor indicates doors fully closed
state = STATE_DOOR_CLOSED;

page 9



// turn off motor to close doors
PORTB = 0;

}
}

}

NOTE here there is no event mailbox, instead each state is responsible for moving to another state 
be setting the “state” variable.

Another way of writing the same thing is to use a “switch” statement instead of multiple “if” 
statements:

while (1)
{

switch (state)
{
case STATE_DOOR_CLOSED:

if ((PORTA & 1) != 0)
{

// switch pressed
state = STATE_DOOR_OPENING;

// turn on motor to open doors
PORTB = 1;

}

break;

case STATE_DOOR_OPENING:

if ((PORTA & 2) != 0)
{

// door sensor indicates doors fully open
state = STATE_DOOR_OPEN;

// turn off motor to open doors
PORTB = 0;

}

break;

case STATE_DOOR_OPEN:

if ((PORTA & 1) != 0)
{

// switch pressed
state = STATE_DOOR_CLOSING;

// turn on motor to close doors
PORTB = 2;

}

break;

case STATE_DOOR_CLOSING:

if ((PORTA & 4) != 0)
{

// door sensor indicates doors fully closed
state = STATE_DOOR_CLOSED;

page 10



// turn off motor to close doors
PORTB = 0;

}
}

}

This type of implementation gets very hard to read as the state machine grows in complexity.

page 11



Table driven state machine

Another way to implement a state machine is to have a small core that dispatches functions 
depending on what state the "state machine" is actually in and what event has occurred. This type of 
implementation uses a table.

Each row of the table would look something like this:

current state
new state
event
state transition function
state monitor function

The core of the state machine would look something like this:

enum EVENT_ID
{

EVENT_NONE,
};

enum STATE_ID
{

STATE_RESET,
};

struct STATE_DESC
{

int cur_state,
new_state,
event;

void (*transition_func)(STATE_ID, STATE_ID, EVENT_ID);
void (*monitor_func)(STATE_ID);

};

void reset_STF(STATE_ID, STATE_ID, EVENT_ID);
void reset_SMF(STATE_ID);

struct STATE_DESC
state_tbl[] =
{

{ STATE_RESET,
  STATE_DOOR_OPENING,
  EVENT_SWITCH_PRESSED,
  reset_STF,
  reset_SMF },

};

EVENT_ID
event,
tmp_event;

STATE_ID
current_state;

int state_tbl_indx;

page 12



current_state = STATE_RESET;
event = EVENT_NONE;
state_tbl_indx = 0;

while (1)
{

if (event != EVENT_NONE)
{

for (j=0; j<max_state_tbl_len; j++)
{

if (state_tbl[j].cur_state == current_state  &&
    state_tbl[j].event     == event)
{

tmp_event = event;

event = EVENT_NONE;

(*state_tbl[j].transition_func)(
current_state,
state_tbl[j].new_state,
tmp_event);

current_state = state_tbl[j].new_state;

state_tbl_indx = j;

break;
}

}
}

(*state_tbl[state_tbl_indx].monitor_func)(current_state);
}

In the above table driven state machine, the state machine is in the state identified by  'current_state' 
the event that is to be processed while the state machine is in the state 'current_state' arrives in the 
mailbox called 'event'. When an event arrives, the state machine dispatcher looks to find a match 
(state / event pair) in the event table. If it is not found then the event is ignored while in the 
'current_state'. If an entry is found in the event table (event for current_state) then the event 
transition function for the state / event pair is triggered and the new state and state monitor function 
is remembered.

The state monitor function is repeatedly called by the dispatcher when the dispatcher is not 
processing events. This allows the state monitor function to monitor aspects of the system that are 
important to that state and generate events if something occurs.

State transition and monitor functions can be shared and may occur in many places in the state 
table. To make a state monitor function more general purpose it may generate many different 
events, one or more of which are ignored in the current state.

page 13



Benefits of using a small core dispatcher

A very important and useful consequence of using such a state machine dispatcher is that other tasks 
can be performed when the state machine is idle i.e. not executing state transition functions or state 
monitor functions. So the above simple dispatcher could cope with the watchdog.

e.g.

while (1)
{

if (event != EVENT_NONE)
{

for (j=0; j<max_state_tbl_len; j++)
{

if (state_tbl[j].cur_state == current_state  &&
    state_tbl[j].event     == event)
{

tmp_event = event;

event = EVENT_NONE;

(*state_tbl[j].transition_func)(
current_state,
state_tbl[j].new_state,
tmp_event);

current_state = state_tbl[j].new_state;

state_tbl_indx = j;

break;
}

}
}

(*state_tbl[state_tbl_indx].monitor_func)(current_state);

// note addition of watchdog processing
reset_watchdog();

}

page 14



Multiple interacting state machines

Sometimes a state machine will have a large number of states and it will be obvious that large parts 
of the state machine are repeated in different places with small subtle differences. In such cases it is 
often possible to break up such a large state machine into two or more much smaller state machines 
that interact with each other by sending each other events – kind of like breaking down a huge 
program into a set of functions and calling the functions in many different places.

Another important benefit of using a a table driven state machine is that it makes concurrently 
running two or more interacting state machines trivial. 

e.g.
while (1)
{

if (event_1 != EVENT_NONE)
{

for (j=0; j<max_state_tbl_1_len; j++)
{

if (state_tbl_1[j].cur_state == current_state_1  &&
    state_tbl_1[j].event     == event_1)
{

tmp_event = event_1;

event_1 = EVENT_NONE;

(*state_tbl_1[j].transition_func)(
current_state_1,
state_tbl_1[j].new_state,
tmp_event);

current_state_1 = state_tbl_1[j].new_state;

state_tbl_1_indx = j;

break;
}

}
}

// NOTE addition of second state machine dispatcher

(*state_tbl_1[state_tbl_indx].monitor_func)(current_state_1);

if (event_2 != EVENT_NONE)
{

for (j=0; j<max_state_tbl_2_len; j++)
{

if (state_tbl_2[j].cur_state == current_state_2  &&
    state_tbl_2[j].event     == event_2)
{

tmp_event = event_2;

event_2 = EVENT_NONE;

(*state_tbl_2[j].transition_func)(
current_state_2,
state_tbl_2[j].new_state,
tmp_event);

current_state_2 = state_tbl_2[j].new_state;

page 15



state_tbl_2_indx = j;

break;
}

}
}

(*state_tbl_2[state_tbl_2_indx].monitor_func)(current_state_2);
}

page 16



Table driven inefficiencies

It may appear that the table driven state machine is much more inefficient than the simpler 
equivalent group of conditional statements. Actually there are some inefficiencies but there is also 
one huge gain – the state monitor function can be computed and executed very efficiently when no 
events occur. In contrast, executing the equivalent state monitor code in the simpler state machine 
(using the group of conditional statements) takes longer because of all the wasted tests needed to get 
to the  state monitor code.

Also when searches in the state table start to impact on performance it is possible to greatly reduce 
the search time by implementing more complex state tables. Such optimisations are very hard to do 
on the simpler group of conditional statements type of state machine.

page 17



Complete example of a table driven state machine

enum EVENT_ID
{

EVENT_NONE,
EVENT_SWITCH_PRESSED,
EVENT_DOOR_FULLY_OPENED,
EVENT_DOOR_FULLY_CLOSED

};

enum STATE_ID
{

STATE_DOOR_CLOSED,
STATE_DOOR_OPENING,
STATE_DOOR_OPEN,
STATE_DOOR_CLOSING

};

struct STATE_DESC
{

int cur_state,
new_state,
event;

void (*transition_func)(STATE_ID, STATE_ID, EVENT_ID);
void (*monitor_func)(STATE_ID);

};

void door_closed_STF(STATE_ID, STATE_ID, EVENT_ID);
void door_closed_SMF(STATE_ID);

void door_opening_STF(STATE_ID, STATE_ID, EVENT_ID);
void door_opening_SMF(STATE_ID);

void door_open_STF(STATE_ID, STATE_ID, EVENT_ID);
void door_open_SMF(STATE_ID);

void door_closing_STF(STATE_ID, STATE_ID, EVENT_ID);
void door_closing_SMF(STATE_ID);

struct STATE_DESC
state_tbl[] =
{

{ STATE_DOOR_CLOSED,
  STATE_DOOR_OPENING,
  EVENT_SWITCH_PRESSED,
  door_closed_STF,
  door_closed_SMF },

{ STATE_DOOR_OPENING,
  STATE_DOOR_OPEN,
  EVENT_DOOR_FULLY_OPENED,
  door_opening_STF,
  door_opening_SMF },

{ STATE_DOOR_OPEN,
  STATE_DOOR_CLOSING,
  EVENT_DOOR_FULLY_CLOSED,
  door_open_STF,
  door_open_SMF },

page 18



{ STATE_DOOR_CLOSING,
  STATE_DOOR_CLOSED,
  EVENT_SWITCH_PRESSED,
  door_closing_STF,
  door_closing_SMF },

};

void state_machine_dispatcher(void)
{

EVENT_ID
event,
tmp_event;

STATE_ID
current_state;

int state_tbl_indx;

current_state = STATE_DOOR_CLOSED;
event = EVENT_NONE;
state_tbl_indx = 0;

while (1)
{

if (event != EVENT_NONE)
{

for (j=0; j<max_state_tbl_len; j++)
{

if (state_tbl[j].cur_state == current_state  &&
    state_tbl[j].event     == event)
{

tmp_event = event;

event = EVENT_NONE;

(*state_tbl[j].transition_func)(
current_state,
state_tbl[j].new_state,
tmp_event);

current_state = state_tbl[j].new_state;

state_tbl_indx = j;

break;
}

}
}

(*state_tbl[state_tbl_indx].monitor_func)(current_state);
}

}

void door_closed_STF(STATE_ID cur_state, STATE_ID new_state, EVENT_ID new_event)
{
}

void door_closed_SMF(STATE_ID state)

page 19



{
if ((PORTA & 1) != 0)
{

// switch pressed
event = EVENT_SWITCH_PRESSED;

// turn on motor to open doors
PORTB = 1;

}
}

void door_opening_STF(STATE_ID cur_state, STATE_ID new_state, EVENT_ID new_event)
{
}

void door_opening_SMF(STATE_ID state)
{

if ((PORTA & 2) != 0)
{

// door sensor indicates doors fully open
event = EVENT_DOOR_FULLY_OPENED;

// turn off motor to open doors
PORTB = 0;

}
}

void door_open_STF(STATE_ID cur_state, STATE_ID new_state, EVENT_ID new_event)
{
}

void door_open_SMF(STATE_ID state)
{

if ((PORTA & 1) != 0)
{

// switch pressed
event = EVENT_SWITCH_PRESSED;

// turn on motor to close doors
PORTB = 2;

}
}

void door_closing_STF(STATE_ID cur_state, STATE_ID new_state, EVENT_ID new_event)
{
}

void door_closing_SMF(STATE_ID state)
{

if ((PORTA & 4) != 0)
{

// door sensor indicates doors fully closed
event = EVENT_DOOR_FULLY_CLOSED;

// turn off motor to close doors
PORTB = 0;

}
}

page 20



Critical event order
Sometimes people complain that a state machine misses an event when it shouldn't or that the order 
in which events arrive is critical. They think that this is a fundamental problem with state machines. 
The reality is that the state machine concept is fine, it is the model of the system that they are trying 
to describe as a state machine that is wrong.

Consider the following:

The system has two switches (labelled SWA and SWB) and two LEDs (labelled LDA and LDB). 
when switch SWA  is pressed LED LDA is to illuminate, when switches SWA and SWB are pressed 
both LEDs LDA and LDB are to illuminate.

So we can describe the system as 3 states (Fig 12):

S1 = LDA and LDB are both extinguished
S2 = LDA is illuminated and LDB is extinguished
S3 = LDA and LDB are both illuminated

Now we need to add events to cause transitions between the states (Fig 13)

S1 = LDA and LDB are both extinguished

page 21

Fig 12: 

S1 S2 S3

Fig 13: 

S1 S2

E2

E4

S3

E1

E3



S2 = LDA is illuminated and LDB is extinguished
S3 = LDA and LDB are both illuminated

E1 = SWA pressed
E2 = SWB pressed
E3 = SWB released
E4 = SWA released

From this we can see that pressing switch SWA then SWB will cause both LEDs LDA and LDB to 
be illuminated (state S3).

So if both switches SWA and SWB are pressed simultaneously we just need to ensure that event E1 
is seen before event E2 – wrong, we should not impose this requirement. How would we guarantee 
this anyway? Should we specify that there is always a delay after reading a switch just in case the 
other switch is also being pressed? If so how long should the delay be 0.5 seconds, 1.0 seconds? 
This just complicates the switch reading software and prevents the state machine responding to 
events while the CPU is tied up busy waiting for the switches to be read.

What we actually need to do is take advantage of the state machine and use its properties to solve 
the problem. We know that in state S1 either event E1 or event E2 can occur, so let us add that to 
the diagram (Fig 14):

But all event transitions must be between states. In other words this new event must lead to a state.

Now we have a problem. How do we add a new state as we have already defined all possible states 
for this state machine. The answer is to refine the existing states and in the process make room for 
new states. 

We will start by fully annotating the state diagram to make things easier to see (Fig 15)

page 22

Fig 14: 

S2

E2

E2

S3

E1

E3

S1

E4



We go from “only interested in condition of LEDs”:

S1 = LDA is extinguished
LDB is extinguished

S2 = LDA is illuminated
LDB is extinguished

S3 = LDA is illuminated
LDB is illuminated

To “interested in condition of LEDs and switches”:

S1 = LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

S2 = LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

S3 = LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

NOTE: In state S1, SWA pressed is NOT the same as the event E1 SWA pressed. In the event E1 
“SWA pressed” indicates a transition from released to pressed whereas in S1 “SWA pressed” 
indicated the switch is actually in the pressed conditional (or being held in the ON condition if you 

page 23

Fig 15: 

S2

E2

E2

S3

E1

S1

E3E4

LDA is extinguished
LDB is extinguished

LDA is illuminated
LDB is extinguished

LDA is illuminated
LDB is illuminated

SWA pressed

SWB pressed

SWB pressed

SWA released SWB released



prefer).

We can now redraw the fully annotated state diagram with the revised properties of each state.

This gives us the possibility of a new state:

S2b = LDA is extinguished
LDB is extinguished
SWA is released
SWB is pressed

NOTE: S1 and S2b can now coexist even though LDA and LDB are in an identical condition for 
both states because we have introduced a new property by which we can tell them apart.

We can now add this new state to our diagram (Fig 18) and as if by magic it fits exactly where we 
predicted a new state needs to be placed.

page 24

Fig 16: 

S2

E2

E2

S3

E1

S1

E3E4

LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

SWA pressed

SWB pressed

SWB pressed

SWA released SWB released



S1 = LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

S2 = LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

S2b = LDA is extinguished
LDB is extinguished
SWA is released
SWB is pressed

S3 = LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

E1 = SWA pressed
E2 = SWB pressed
E3 = SWB released
E4 = SWA released

Now it is immediately obvious that there is an event missing between states S2b and S3, so we add 

page 25

Fig 17: 

S2b

S2

E2

E2

S3

E1

S1

E3E4

LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

LDA is extinguished
LDB is extinguished
SWA is released
SWB is pressed

SWA pressed

SWB pressed

SWB pressed

SWA released SWB released



that (Fig 18):

Now the state diagram is starting to look a little crowded so we will remove the annotations to make 
it simpler to see the overall structure (too much detail can obscure the model) (Fig 19)

Notice that we haven't added any new types of events but we have added a new state. Now the 
systems looks as though it will actually work. It seems to cope with the two switches being pressed 

page 26

Fig 19: 

S2b

S2

E2

E2

S3

E1

E3

S1

E1

E4

Fig 18: 

S2b

S2

E2

E2

S3

E1

S1

E1

E3E4

LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

LDA is extinguished
LDB is extinguished
SWA is released
SWB is pressed

SWA pressed

SWA pressed

SWB pressed

SWB pressed

SWA released SWB released



simultaneously regardless of the order in which the events occur.

Now comes the time to make use of the hidden power of the state machine diagram. Using the 
diagram, try simulating what happens when you press and release switches in different orders. For 
the two switches you will have the following combinations

SWA = released,   SWB = released
SWA = pressed,    SWB = released
SWA = released,   SWB = pressed
SWA = pressed,    SWB = pressed

If you apply all 4 of the above combinations to each of the states S1, S2, S2b and S3 you will be 
able to verify the correct operation of the system for all combinations of all defined inputs.

Doing this you will find that there is a problem if you start at S1 and you press and release SWB 
before SWA. Pressing SWB while in S1 takes you to S2b and subsequently releasing SWB leaves 
you still in S2b. Pressing SWA then takes you from S2b to S3. This is not what we intended.

We end up in S3 while SWA is released and our definition of S3 clearly states that both SWA and 
SWB are pressed while in this state.

The state machine diagram has highlighted the fact that we have not considered pressing and 
releasing SWB before SWA. Looking at the state diagram it is clear that if we release SWB while in 
S2b we need a state transition back to S1 (this is the state with both SWA and SWB released). In 
other words an E3 event occurring at S2b should cause a transition back to S1, thus (Fig 20):

If we go through the same debug process again we will find that this time, pressing and releasing 

page 27

Fig 20: 

S2b

S2

E2

E2

S3

E1

E3

S1

E1

E4 E3



SWB will take us back to S1 and subsequently pressing SWA will make the system behave the way 
we intended it to.

Continuing with the debugging we now find that while in state S3, if we release SWA, the system 
again starts to behave in an unexpected manor. In this situation both LEDs are illuminated whereas 
we expect them to both be extinguished. We need the state machine to react to event E4 (switch 
SWA being released) while in state S3. So we need the state which has as its properties SWA and 
SWB both pressed to transition to the state which has as its properties SWA released and SWB 
pressed when an event E4 occurs. Looking at the diagram we can see that state S2b has the 
properties SWA released and SWB pressed. So we need a state transition from S3 to S2b when 
event E4 occurs, thus (Fig 21):

Again we can go through the debug process and this time we find that the system behaves as 
expected regardless of whether E1 or E2 arrives first during a simultaneous pressing of SWA and 
SWB or whether E3 or E4  arrives first during a simultaneous releasing of SWA and SWB.

The important point here is that the diagram has actually lead us to the correct solution based on:
1. the state we were in when the error occurred
2. the state we actually wanted to be in
3. the event that was needed to take us from the error state to the required correct state.

page 28

Fig 21: 

S2b

S2

E2

E2

S3

E1

E3

S1

E1
E4

E3E4



The fully annotated state diagram is shown in Fig 22

page 29

Fig 22: 

S2b

S2

E2

E2

S3

E1

E3

S1

E1
E4

E3E4

LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

LDA is extinguished
LDB is extinguished
SWA is released
SWB is pressed

SWA pressed

SWA pressed

SWB pressed

SWB pressed

SWA released SWB released

SWB released

SWA released



Step by step debugging using a state diagram
Testing and debugging a state machine gets more complicated as the number of states increases. It 
gets harder to keep track of which states have been checked and in particular which events for a 
given state have been checked. The easiest way to do this is to build a trace path using the state 
diagram from which the state machine was produced.

How this works: we pick a colour to highlight   the current state and last event - I prefer red.

To start, take a printed copy of your state machine (Fig 23) and highlight the initial (or start state) in 
red:

No no mater what happens now (whether the phone rings and you get dragged into a long tech 
support conference call or you simply end up trudging through a long assembly listing of your 
code) you will instantly know where you are in the state machine.

Next we apply a stimulus to the system that will generate an event. For this system we have only 
defined four events (E1, E2, E3 and E4 ) and they can only be generated by:

E1 = SWA pressed
(this is a transition of the switch from released to pressed)

E2 = SWB pressed
(this is a transition of the switch from released to pressed)

page 30

Fig 23: 

S2b

S2

E2

E2

S3

E1

E3

S1

E1
E4

E3E4

LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

LDA is extinguished
LDB is extinguished
SWA is released
SWB is pressed

SWA pressed

SWA pressed

SWB pressed

SWB pressed

SWA released SWB released

SWB released

SWA released



E3 = SWB released
(this is a transition of the switch from pressed to released)

E4 = SWA released
(this is a transition of the switch from pressed to released)

NOTE: we do not repeatedly get event E1 while the switch is held pressed, we only get one event 
during the transition from released to pressed.

So the stimulus we chose is “press SWA”. We note the new condition of SWA (pressed) and we 
trace the effect of the generated event E1. Tracing is archived by:

(1) highlighting the event that has been generated
(2) fading the state that was the current state
(3) highlighting the new current state

NOTE: this process also works when the event transitions back to the same current state.

Fig 24 shows an example of a traced state transition from S1 to S2 caused by E1

Now we need to look at the code of the state transition function that must be invoked when there is 
a state transition between S1 and S2 caused by event E1. This is part of the testing / debugging 
process. We need to see what effect this code will have on the system / state machine.

NOTE: it is possible for the state transition function to generate an event or change some other 

page 31

Fig 24: 

S2b

S2

E2

E2

S3

E1

E3

S1

E1
E4

E3E4

LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

LDA is extinguished
LDB is extinguished
SWA is released
SWB is pressed

SWA pressed

SWA pressed

SWB pressed

SWB pressed

SWA released SWB released

SWB released

SWA released



property of the state (e.g. initialise a global variable).

Next we repeat the process. This time we will select “press SWB” as the stimulus. Again we make a 
note of the new condition of SWB (pressed) and we trace the new event E2 on the state diagram 
(Fig 25)

NOTE: the previous highlighted state and event (the red ones in Fig 24) are now faded and the new 
current state and event leading to that state are highlighted (the red ones in Fig 25).

As before we need to look at the code of the state transition function that must be invoked when 
there is a state transition between S2 and S3 caused by event E2.

We must repeat this process until all events and all states have been covered and shown as faded on 
the state diagram.

While we are tracing through the state diagram we must also ensure that all the properties of the 
current state are in the condition defined for that state. In the case of our example system this means 
that the LEDs LDA and LDB are illuminated or extinguished as per the requirements of the state 
and that the switches SWA and SWB are in the pressed or released condition as  per the 
requirements of the state. If any of the properties of the state is undefined or does not match the 
requirements of the state then we have discovered a bug in the system.

Now the only other thing to do is verify the code of the state monitor functions for each state. The 
smaller these functions the easier it is to verify them. State monitor functions should not maintain 
any state information that is hidden from the state diagram. Doing so makes it much harder to verify 

page 32

Fig 25: 

S2b

S2

E2

E2

S3

E1

E3

S1

E1
E4

E3E4

LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

LDA is extinguished
LDB is extinguished
SWA is released
SWB is pressed

SWA pressed

SWA pressed

SWB pressed

SWB pressed

SWA released SWB released

SWB released

SWA released



and maintain the state machine.

e.g. if state S1 has a state monitor function that uses a global variable X and state S3 has another 
state monitor function that uses the same global variable X then we might enter S1 or S3 with 
invalid or undefined values of X. This makes it difficult to verify S1 and S3 since we have a 
property which S1 and S3 are dependent on which we cannot verify. To correct this fault we must 
specify X as a property of S1 and S3 and we must also specify the value or range of values which 
this variable must have when in this state.

When you have gone through every state and every event, your state diagram will look like Fig 26

Here you see that all the states and events have been covered at least once (they are either faded or 
highlighted). If any of the states is not covered then this indicates that the state is not reachable via 
any of the events that lead to it. If any of the events are not covered then this indicates that either:

1. the events have not been generated for the state from which they originates or
2. the events cannot be generated  for the state from which they originate

To show how the state diagram would catch a faulty design let use remove the event transition E4 
between S3 and S2b and start the trace from the beginning (Fig 27)

page 33

Fig 26: 

S2b

S2

E2

E2

S3

E1

E3

S1

E1
E4

E3E4

LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

LDA is extinguished
LDB is extinguished
SWA is released
SWB is pressed

SWA pressed

SWA pressed

SWB pressed

SWB pressed

SWA released SWB released

SWB released

SWA released



Now we can apply stimuli selectively to each of the states in turn as we trace through the state 
machine and we will find that there is a path that will allow us to cover all of the states and events 
shown.

try this
SWA pressed : S1(E1) -> S2
SWB pressed : S2(E2) -> S3
SWB released : S3(E3) -> S2
SWA released : S2(E4) -> S1
SWB pressed : S1(E2) -> S2b
SWA pressed : S2b(E1) -> S3
SWB released : S3(E3) -> S2
SWA released : S2(E4) -> S1
SWB pressed : S1(E2) -> S2b
SWB released : S2b(E3) -> S1

However if we apply all the possible stimuli to the system while we are in each of the states, we 
will find that when we get to S3 releasing SWA generates an event E4 for which there is no state 
transition so the state machine does not respond to E4 (this is OK as we are allowed to ignore 
events while in a state) however after the event E4 has occurred, the state machine remains in S3 
and one of the properties of S3 is now invalid i.e. SWA is in the released condition and it should be 
in the pressed condition.

page 34

Fig 27: 

S2b

S2

E2

E2

S3

E1

E3

S1

E1

E3E4

LDA is extinguished
LDB is extinguished
SWA is released
SWB is released

LDA is illuminated
LDB is extinguished
SWA is pressed
SWB is released

LDA is illuminated
LDB is illuminated
SWA is pressed
SWB is pressed

LDA is extinguished
LDB is extinguished
SWA is released
SWB is pressed

SWA pressed

SWA pressed

SWB pressed

SWB pressed

SWA released SWB released

SWB released



Animation of a real state machine trace

An example of an animation showing a trace of a real state machine can be found at:
http://www.xcprod.com/titan/DEMO/zmech001.gif
This animation shows an actual trace of a self contained PIC 16F628 machine code executable 
performed using the ZMech state machine development tool. On the left of the image are 8 virtual 
switches which the user can toggle using the mouse. In this way the user can provide a stimulus 
which the virtual PIC can interpret as an event. All event transitions that the state machine performs 
on the virtual PIC are shown on the state diagram. Once the user is satisfied that the executable is 
working correctly it can be downloaded to a PIC without modification and run in real time.

page 35

http://www.xcprod.com/titan/DEMO/zmech001.gif


Reducing multiple states to a single state
Here we will show how to combine a simple sequence of similar states into one state.

Let us start by defining the requirement. We need to see a switch pressed three times in quick 
succession and on the third press we need to illuminate an LED. We will call the switch SWA and 
the LED LDA

S1 = LDA extinguished
S2 = LDA extinguished
S3 = LDA extinguished
S4 = LDA illuminated

E1 = SWA pressed
E2 = time-out occurred

NOTE: here the special event E2 (time-out occurred) would probably be generated by an interrupt 
routine periodically counting down. The state transition function invoked during a transition 
between states caused by event E1 would probably be used to reset this time-out.

page 36

Fig 28: 

S4

E1

S1

E2

LDA is extinguished

SWA pressed
E1E1

SWA pressedSWA pressed

E2

Timie-out occurred

LDA is illuminatedLDA is extinguished LDA is extinguished

Timie-out occurred

S2 S3



S1 = LDA extinguished
S2b = LDA extinguished

1 > X < 4
S4 = LDA illuminated

E1 = SWA pressed
E2 = time-out occurred
E3 = pressed limit reached (X = 3)

The following things have changed between Fig 28 and Fig 29
(1) state S2 and S3 have gone
(2) state S2b has been added
(3) state S2b has the property (i.e. 1 > X < 4)
(4) state S2b is affected by event E1 such it causes a transition back to the same state S2b
(5) event E3 has been added

We has also changed the state transition function invoked when S1 transitions to S2b due to event 
E1. This function must now initialise X to 1 so that it can be used by S2b.

The state transition function invoked when S2b transitions (back) to S2b due to event E1 must 
increment X and when X = 3 it must generate an event S3.

Why is the state machine shown in Fig 29 better than the one shown in Fig 28? Answer: it's not. 
This state machine is an artificial example. Having an extra state an not needing the variable X is 
actually preferable. However if we increased the number of switch presses needed (to say 5 or 
above) then the simplified state machine would justify using a variable.

A situation which would definitely benefit form using variables is when a state machine is used to 
process packets of data to be sent or received over a communications channel.

page 37

Fig 29: 

E3

S1

LDA is extinguished

pressed limit reached

E1
SWA pressed

E2

LDA is illuminated

LDA is extinguished
1 > X < 4

Timie-out occurred

S2b S4

E1
SWA pressed



The event queue
The simplest event queue that can be implemented is a mailbox. This is simply a variable which 
holds the ID of the last event triggered or a special number which indicates “no new events have 
occurred since the last event was processed”. The event mailbox is very simple to implement and 
efficient to use. However it does have a major drawback: only one event can be generated at a time. 
Using an event mailbox means that the event handler must act on an event before the next event is 
generated otherwise events are lost.

In the example we gave where two switches were each capable of generating an independent event 
we did not consider the possibility that either switch could generate an event before the event of the 
other switch had been processed. If we used a simple input monitoring function to generate an event 
whenever it saw a change in the state of a switch we could be in trouble if we simply used an event 
mailbox. Consider the following switch reading function:

void read_switch(void)
{

// NOTE: this example assumes that all
// connected switches produce perfectly
// debounced digital signals

static int old_port_a = 0;

int new_port_a;
int j;
int changes;

new_port_a = PORTA;

changes = old_port_a ^ new_port_a;

for (j=0; j<8; j++)
{

if ((changes & (1 << j)) != 0)
{

// a change from pressed to released or
// released to pressed was detected

if ((new_port_a & (1 << j)) != 0)
{

// generate an event indicating switch j was pressed
event = j | 0x80;

}
else
{ // generate an event indicating switch j was released

event = j | 0x00;
}

}
}

old_port_a = new_port_a;
}

Now if we call this 'read_switch' function at the start of our state machine dispatcher we will get an 
event whenever there is a change in a switch condition (i.e. it changes from pressed to released or 

page 38



from released to pressed). This works great unless two switches change condition at exactly the 
same instant. In this situation we find that the first event is overwritten by the second event before 
the function has returned and given the state machine dispatcher the opportunity to process the first 
event. In other words the first event gets lost.

It would be possible to change the 'read_switch' function such that it only ever returns one event at a 
time but this would complicate the function and would only defer the solution of the problem. Say 
we also needed to add another source of events – maybe temperature too low or too hot. We would 
then need to implement another function say 'read_temperature', which we would need to call 
before or after 'read_switch'. Now we start have problems since each function must be away of the 
others ability to generate events and be capable of holding off until the others events have been 
processed. This is a horrible solution since it is error prone, difficult to debug and maintain. A much 
simpler solution is to use a real queue maintained by other functions which can be used by the 
'read_switch', 'read_temperature' and any other functions we may need to add to generate events and 
the state machine dispatcher which will process the events.

The following is a set of simple queue handling functions which will fulfil our requirements.

#define  max_event_queue_len 8

struct EVENT_QUEUE
{

int head,
tail;

int buff[max_event_queue_len];
};

void event_queue_init(void)
{

 event_queue.head = 0;
 event_queue.tail = 0;

}

int event_queue_read(void)
{

int res, index;

if (event_queue.tail ==  event_queue.head)
{

// return and indicate no events in queue
return EVENT_NONE;

}

res =  event_queue.buff[event_queue.tail];

index = event_queue.tail + 1;

if ( index ==  max_event_queue_len)
{

index = 0;
}

event_queue.tail = index;

return res;
}

page 39



void event_queue_write(int val)
{

int index;

index = event_queue.head + 1;

if (index ==  max_event_queue_len)
{

index = 0;
}

if (index != event_queue.tail)
{

// the event queue is not full so append the event

event_queue.buff[index] = val;

event_queue.head = index;
}

}

NOTE: 'max_event_queue_len' is defined as 8. This means that our event queue can hold a 
maximum of 7 events. If we try to store more than 7 events at any one time, the newer events will 
be discarded.

So our 'read_switch' function now becomes:

void read_switch(void)
{

// NOTE: this example assumes that all
// connected switches produce perfectly
// debounced digital signals

static int old_port_a = 0;

int new_port_a;
int j;
int changes;
int tmp_event;

new_port_a = PORTA;

changes = old_port_a ^ new_port_a;

for (j=0; j<8; j++)
{

if ((changes & (1 << j)) != 0)
{

// a change from pressed to released or
// released to pressed was detected

if ((new_port_a & (1 << j)) != 0)
{

// generate an event indicating switch j was pressed
tmp_event = j | 0x80;

}
else
{ // generate an event indicating switch j was released

tmp_event = j | 0x00;
}

page 40



// NOTE: we now use a FIFO as an event queue
// instead of a mailbox
event_queue_write(tmp_event);

}
}

old_port_a = new_port_a;
}

and our state machine dispatcher now becomes:

while (1)
{

read_switch();

read_temperature();

tmp_event = event_queue_read();

if (tmp_event != EVENT_NONE)
{

for (j=0; j<max_state_tbl_len; j++)
{

if (state_tbl[j].cur_state == current_state  &&
    state_tbl[j].event     == tmp_event)
{

(*state_tbl[j].transition_func)(
current_state,
state_tbl[j].new_state,
tmp_event);

current_state = state_tbl[j].new_state;

state_tbl_indx = j;

break;
}

}
}

(*state_tbl[state_tbl_indx].monitor_func)(current_state);
}

The small state machine core (the dispatcher loop) has allowed us to elegantly place the polling 
functions (switch, temperature and any other input reading functions) where they will be repeatedly 
invoked to produce a constant stream of data for the rest of the system to consume. This will reduce 
the overall reaction time to an external event without having to write complex spaghetti code to 
achieve the same effect as is sometimes the case.

However since most of the event transition and monitor functions are very short (they run to 
completion very quickly) we are now spending a disproportionate amount of time polling inputs 
that cannot physically change within the time it takes to execute the polling function several 
hundred times (switch change might take 20ms, polling function executed about 500 times in 
20ms). This will often not be a problem but there will be the odd occasion when it is – primarily 
because the state monitor function of the current state needs a big slice of the CPU's time (maybe 
it's doing complex maths). A simple solution is to reduce the number of times the polling functions 
are called relative to the event transition and monitor functions.
 e.g.

page 41



poll_cnt = 0;

while (1)
{

poll_cnt++;

if (poll_cnt >= 100)
{

poll_cnt = 0;

read_switch();

read_temperature();
}

tmp_event = event_queue_read();

if (tmp_event != EVENT_NONE)
{

for (j=0; j<max_state_tbl_len; j++)
{

if (state_tbl[j].cur_state == current_state  &&
    state_tbl[j].event     == tmp_event)
{

(*state_tbl[j].transition_func)(
current_state,
state_tbl[j].new_state,
tmp_event);

current_state = state_tbl[j].new_state;

state_tbl_indx = j;

break;
}

}
}

(*state_tbl[state_tbl_indx].monitor_func)(current_state);
}

An alternative to 'poll_cnt' would be to use a software timer that is decremented to zero by the 
systems heartbeat interrupt handler. This has the advantage of compensating for both high and low 
demands on the CPU's time by both the event transition and state monitor functions.

e.g.
void main()
{

sw_timer_1 = 0;

while (1)
{

if ( sw_timer_1 == 0)
{

// reset the software timer

// NOTE: sw_timer_1 is now in multiples
// of the heartbeat time,
// e.g. for heartbeat = 5ms
//  sw_timer_1 = 4 * 5ms = 20ms

sw_timer_1 = 4;

page 42



read_switch();

read_temperature();
}

tmp_event = event_queue_read();

if (tmp_event != EVENT_NONE)
{

for (j=0; j<max_state_tbl_len; j++)
{

if (state_tbl[j].cur_state == current_state  &&
    state_tbl[j].event     == tmp_event)
{

(*state_tbl[j].transition_func)(
current_state,
state_tbl[j].new_state,
tmp_event);

current_state = state_tbl[j].new_state;

state_tbl_indx = j;

break;
}

}
}

(*state_tbl[state_tbl_indx].monitor_func)(current_state);
}

}

void interrupt_handler
{

// this function is executed whenever an
// interrupt occurs

if (sw_timer_1 != 0)
{

// decrement software timer down to zero
sw_timer_1­­;

}
}

page 43



Generating events during an interrupt

The event queue handling functions are interrupt safe provided the 'event_queue_write' function is 
not used in both the interrupt handler and the main line code. If reading from the event queue only 
ever occurs in the main line code (actually the state machine dispatcher) and writing to the event 
queue only occurs in the interrupt handler then there is no possibility of conflict and interrupts do 
not need to be disabled while the event queue is being written to.

If the main line code is also to generate events (concurrently with the interrupt handler) then 
interrupts should be disabled during writing to the event queue from within the main line code 
(actually the state monitor or transition functions).

However a much better solution would be to use two separate events queues, one that is only 
written to by the interrupt handler and one that is only written to by the main line code. In this way 
there is no need to disable interrupts during writing to the event queue and so interrupt response is 
not impacted by the implementation of the state machine.

e.g.  
// NOTE: the use of functions dedicated to
// processing only the interrupt event queue

#define  max_event_queue_interrupt_len 8

struct EVENT_QUEUE_INTERRUPT
{

int head,
tail;

int buff[max_event_queue_interrupt_len];
};

struct EVENT_QUEUE_INTERRUPT
 event_queue_interrupt;

void event_queue_interrupt_init(void)
{

 event_queue_interrupt.head = 0;
 event_queue_interrupt.tail = 0;

}

int event_queue_interrupt_read(void)
{

int res, index;

if (event_queue_interrupt.tail ==  event_queue_interrupt.head)
{

// return and indicate no events in queue
return EVENT_NONE;

}

res =  event_queue_interrupt.buff[event_queue_interrupt.tail];

index = event_queue_interrupt.tail + 1;

page 44



if ( index ==  max_event_queue_interrupt_len)
{

index = 0;
}

event_queue_interrupt.tail = index;

return res;
}

void event_queue_interrupt_write(int val)
{

int index;

index = event_queue_interrupt.head + 1;

if (index ==  max_event_queue_interrupt_len)
{

index = 0;
}

if (index != event_queue_interrupt.tail)
{

// the event queue is not full so append the event

event_queue_interrupt.buff[index] = val;

event_queue_interrupt.head = index;
}

}

// NOTE: the use of functions dedicated to
// processing only the main line event queue

#define  max_event_queue_len 8

struct EVENT_QUEUE
{

int head,
tail;

int buff[max_event_queue_len];
};

struct EVENT_QUEUE
 event_queue;

void event_queue_init(void)
{

 event_queue.head = 0;
 event_queue.tail = 0;

}

int event_queue_read(void)
{

int res, index;

if (event_queue.tail ==  event_queue.head)
{

// return and indicate no events in queue
return EVENT_NONE;

}

res =  event_queue.buff[event_queue.tail];

page 45



index = event_queue.tail + 1;

if ( index ==  max_event_queue_len)
{

index = 0;
}

event_queue.tail = index;

return res;
}

void event_queue_write(int val)
{

int index;

index = event_queue.head + 1;

if (index ==  max_event_queue_len)
{

index = 0;
}

if (index != event_queue.tail)
{

// the event queue is not full so append the event

event_queue.buff[index] = val;

event_queue.head = index;
}

}

void interrupt_handler
{

// this function is executed whenever an
// interrupt occurs

// these functions would now only write
// events to the interrupt event queue

read_switch();

read_temperature();
}

void main()
{

while (1)
{

// NOTE the use of two separate event queues
 

// process all events generated by interrupts then
// all events generated by main line code

tmp_event = event_queue_interrupt_read();

if (tmp_event == EVENT_NONE)
{

tmp_event = event_queue_read();
}

if (tmp_event != EVENT_NONE)

page 46



{
for (j=0; j<max_state_tbl_len; j++)
{

if (state_tbl[j].cur_state == current_state  &&
    state_tbl[j].event     == tmp_event)
{

(*state_tbl[j].transition_func)(
current_state,
state_tbl[j].new_state,
tmp_event);

current_state = state_tbl[j].new_state;

state_tbl_indx = j;

break;
}

}
}

(*state_tbl[state_tbl_indx].monitor_func)(current_state);
}

}

page 47



Decreasing interrupt overheads

Doing a lot of work while servicing an interrupt is usually a very bad idea. Consider a system that 
can execute 1,000,000 machine instructions per second – sounds like a huge number. Its interrupt 
handler consists of 5000 machine instructions and an interrupt occurs every 10ms. This means that 
the CPU spends (5000 * 1 / 0.01 = 500,000) machine instructions per second executing interrupt 
code. Since the CPU can only execute 1,000,000 machine instructions per second, this means that 
we only have 50% of the CPU's time for use in the main line. If we needed to increase the 
frequency of the interrupts to 5ms, our CPU would grind to a halt since it would be spending 100% 
of its time in the interrupt handler. Clearly spending as little time in the interrupt handler as possible 
is highly desirable.

To make the interrupt handler as lean as possible, developers often resort to generating packets of 
data within the interrupt handler and leaving these for the main line code to process. This might not 
seem like much of a gain because what we are gaining in the interrupt handler we are losing in the 
main line. However, in the main line we can choose whether to process data generated by the 
interrupt handler depending on how the main line is currently coping whereas we would have no 
choice but to process it if we doing so in the interrupt handler.

A state machine fits in very well with this interrupt handler generator / main line consumer 
approach. The state machine is executing in the main line and is the consumer, while the interrupt 
handler is the generator producing packets of data and events for the state machine to consume. 
Now the real elegance in all this is that the state machine only needs to consume packets determined 
by which state it is currently in and which events that state will respond to. Furthermore it becomes 
really trivial for the interrupt handler to change its behaviour depending on which state the main 
line is currently in. Think of this as though the state monitor function were split such that part of it 
executes in the main line and part in the interrupt handler. But remember, just because we can do 
this does not mean that we automatically should. Often it is better to let the state monitor function 
(executing in the main line) do the polling. We should only resort to splitting a state monitor 
function into main line / interrupt pair if we get a big gain.

page 48



Multiple interacting state machines
This System employs multiple interacting state machines to drive multi-master I2C communications 
as a low priority background task.

It was designed and debugged using the ZMech state machine development tool. The end result will 
run on real PIC MCUs. The same system could have been implemented using paper, pencil and an 
assembler but it would have taken a lot longer and the documentation wouldn't have looked as 
good. The pictures shown in this document are mostly unmodified screen shots. Any modification 
present are purely to highlight areas of interest.

page 49



Overall system design

This image shows an exact snapshot 
of a complex system designed using 
ZMech. 

To view this image in greater detail 
see appendix 1

To view a component state machine 
in greater detail see appendix 3

To view a detailed description of the 
high level comms state machine 
(MODE B) see appendix 3 

CPU view

This image is an annotated version of 
the above image. It has regions 
highlighted and labelled for the 
benefit of the user of this 
documentation. 

Each highlighted region is a 
functional block. Some functional 
blocks contain one or more other 
functional blocks. 

This diagram shows that, at the 
highest level, the system is made up 
of two CPU components and four 
SW (switch) components (two 

groups of two). 

To view this image in greater detail see appendix 2

To view a detailed description of the high level comms state machine (MODE B) see appendix 3 

In the HTML (WEB) version of this documentation this image as an index to this 
documentation, click on a functional block to see a description of that block 

page 50



CPU component breakdown

In this system both CPU components 
are identical and each is made up of 

• two MODE components 
• one I2C component
• one VCLK component
• two I/O components (one 

group of two) 

Each mode is a fully functional self 
contained state machine 

To view MODE A in greater detail 
click here 

page 51

file:///home/sergio/STATE_MACHINE/zmech-state-machine/plain-mode-a.png


Intra CPU mode interaction 

In this system, MODE A has been 
designed to handles I/O events from 
the external switches and comms 
events from MODE B. When an 
external switch changes from on to 
off or from off to on, MODE A 
generates a message and sends 
MODE B an event telling it a 
message is ready and waiting to be 
sent. 

Each mode is a fully functional self 
contained state machine 

In this system, MODE A has been 
designed to handles I/O events from 
the external switches, while MODE 
B has been designed to handle the 
high level communications protocol 
between the two CPUs. 

MODE A generates events for 
MODE B in order to initiate a 
message transfer. MODE B responds 
by generating events to MODE A 
indicating when the message is 

accepted for transmission, when transmission is complete, or if some error occurs. All the while 
MODE A is free to continue handling I/O events from the switches. 

MODE B also generates events for MODE A when it receives a message from another CPU. 
These events are not responses to requests from MODE A they are initiated by MODE B which 
is monitoring comms traffic. 

Both MODE A and B transfer data between each other via a shared buffer which is external to 
the event system. They know when it is safe to read from or write to the buffer due to their given 
state. This removes the need for shared resource locks (semaphores etc.) and complex polling 
schemes. 

To view MODE B in greater detail see appendix 3

page 52



part 5

Each mode is a fully functional self 
contained state machine. 

In this system, MODE B has been 
designed to handle the high level 
communications protocol between 
the two CPUs. Conceptually it 
communicates with its counterpart 
MODE B on another CPU. 

To view MODE B in greater detail 
see appendix 3

To view a detailed description of the 
high level comms MODE B state 

machine see Mode B Description 

Mode A / B Interaction

MODE B receives events from 
MODE A and also the I2C driver. It 
schedules bytes to be written to and 
read from the I2C driver. It operates 
in I2C MASTER mode when 
initiating a message transfer, and in 
I2C SLAVE mode when addressed 
by an I2C master. 

MODE B receives events from the I2C driver when: 

• the start of a message destined for this CPU has been detected 
• a byte has been successfully sent 
• a transmission error has been encountered 
• a start or stop condition has been received 
• a byte has been received 
• a busy condition is detected (traffic on the I2C bus between two or more other CPUs is 

detected and is in progress). 

page 53



MODE A generates events for MODE B in order to initiate a message transfer. 

MODE B generates events for MODE A when 

• a MODE A generated message has been accepted for transmission 
• transmission of a message is complete 
• a message transfer if aborted due to an I2C bus error 
• a message is received from another CPU 

Both MODE A and MODE B transfer data between each other via a shared buffer which is 
external to the event system. They know when it is safe to read from or write to the buffer due to 
their given state. This removes the need for shared resource locks (semaphores etc.) and 
complex polling schemes. 

To view a detailed description of the high level comms MODE B state machine see Mode B 
Description 

page 54



I/O Component Description

Here we see the connection between 
the switch components and the I/O 
components 

The switch components are used as 
external hardware mimics. While 
interactively debugging the system, 
the user can activate a switch 
component by clicking on it and the 
input component (connected to it) 
will see a switch toggle. 

The I/O components generate events 
in response to input changes. These 
events are passed to any interested 

state machine for processing by the state machine scheduler. 

Other mimics such as LEDs are also available but not shown here. LED mimics change colour 
when a logic 0, 1 or high impedance is applied to them. They are normally connected to the 
output components of a CPU (not shown) or the outputs of some other component such as an 
I2C component. 

I/O components are mapped directly into the I/O ports of the simulated CPU. When the 
simulated CPU writes to an I/O port the corresponding I/O components route the signals to other 
connected I/O components and can be subsequently read by other simulated CPUs during an I/O 
port read. 

I/O components generates machine code which is directly executable in the target system. No 
additional debug code is generated for the target when the simulator is used in place of a real 
CPU. 

page 55



VCLK Component Description

Here we see the VCLK components 
of both CPUs tied together. 

The VCLK allows the generation of 
a system wide virtual clock. It allows 
several CPUs of varying speeds to be 
connected to a common free running 
clock signal. This clock ensures that 
all CPUs are never more than one 
virtual clock cycle apart. 

A CPU with a VCLK component can 
opt into or out of the system wide 
virtual clock. By opting in, it ensures 
that it will keep pace with the rest of 

the system. By opting out, it enables the rest of the system to run at maximum speed. A CPU 
may continually opt in and out depending on its work load and impact on the rest of the system. 

All CPUs with a participating VCLK component have an associated VCLK counter plus offset. 
The offset is imaginary and once the VCLK starts participating in the system wide virtual clock, 
the offset is fixed and remains constant. If the whole system is stopped at any time the difference 
between any two participating vclk counters (plus associated offsets) will never be greater than 
one. 

The VCLK is driven by the state machine scheduler as a background task. 

When using the VCLK to synchronise message broadcasting, the software should wait for at 
least two VCLK cycles (the VCLK counter should change by two). This will guarantee that all 
other participating CPUs have seen the message. 

The VCLK component generates machine code which is directly executable in the target system. 
No additional debug code is generated for the target when the simulator is used in place of a real 
CPU. Signalling between different CPUs is performed by reading from and writing to real CPU 
I/O ports. The simulator uses I/O components mapped to the CPU's I/O ports to route the signals 
between simulated CPUs. (see I/O components above for further information). 

page 56



I2C Component Description

In this example, comms between the 
two CPUs is provided by an I2C link. 

Here the I2C bit banging is tied to 
the virtual clock (VCLK) but could 
easily be tided to a timer interrupt (or 
even polled if necessary). 

VCLK driven bit banging, reduces 
CPU overhead at the cost of extra I/O 
interconnections. It allows several 
CPUs of varying speeds to be 
connected to a common free running 
clock signal. This clock ensures that 
all CPUs are always no more than 

one clock cycle apart. The VCLK is driven by the state machine scheduler. Consequently tying 
the I2C bit banger to the VCLK causes comms to be driven as a background task. Tying the I2C 
bit banger to a timer interrupt causes comms to be driven as a foreground time critical task. 
Driving the comms in the background allows the CPU to drive other critical I/O with greater 
ease and accuracy (e.g. driving stepper motors or timing external events). 

Driving the I2C comms (bit banger) via the timer interrupt could cause problems in systems 
consisting of several CPUs with large speed differences since a data producer could swamp a 
data consumer. The VCLK reduces the buffering requirements of each CPU since received data 
can be consumed by the state machine as it arrives i.e. VCLK driven comms is synchronous 
with the state machine scheduler. 

I2C and VCLK are multi-drop buses. This means that several CPUs can be connected in parallel 
to these buses, and provided they stick to the defined protocol they will not interfere with each 
other. 

The VCLK component and I2C component generates machine code which is directly executable 
in the target system. No additional debug code is generated for the simulator. Signalling between 
different CPUs is performed by reading from and writing to real CPU I/O ports. The simulator 
uses I/O components mapped to the CPU's I/O ports to route the signals between simulated 
CPUs. (see I/O components above for further information). 

page 57



Animated Message Flow Description

NOTE  : this animation is only active   
if viewed as a WEB page (  click here   
for WEB view  )  

Here we see the flow of a message 
generated by an I/O event. 

Once the code responsible for 
looking after the I/O has generated 
the message and passed it to the 
comms handler, it can get back to 
looking after its I/O. In this design, 
multi-tasking is effectively 
performed by the state machine 
scheduler. As a consequence the I/O 

handling code is clean and lean and does not have to be interleaved with comms code. 

This design uses just two state machines per CPU, but it is possible to use many interacting state 
machines per CPU. The exact number is dependent on the amount of physical memory available 
in the CPU. 

Using background comms it is a simple matter to add additional CPUs to increase the 
computing power of the system. 

By replacing the high level comms state machine in this example, with one that simply passes 
events, it is possible to build very large distributed state machines with very little effort using 
ZMech.

page 58

http://www.xcprod.com/titan/ZMECH-DOC/generate/state-machine/block-message.html
http://www.xcprod.com/titan/ZMECH-DOC/generate/state-machine/block-message.html


Mode B description

To view this state machine in greater detail see appendix 3 

page 59

S1 Idle state 

S2 Init transfer in MASTER mode, 
send "I2C command" byte 

S3 Send "transfer address" low 
byte 

S4 Send "transfer address" high 
byte 

S5 Send "byte count" byte 

S6 Send block ("byte count" 
number of bytes, see S5  )   

S7 Receive block ("byte count" 
number of bytes, see S5) 

S8 Finish transfer (set I2C stop 
condition) 

S9 Init transfer in SLAVE mode, 
receive "I2C command" byte 

S10 Receive "transfer address" 
low byte 

S11 Receive "transfer address" 
high byte 

S12 Receive "byte count" byte 

S13 Receive block ("byte count" 
number of bytes, see S12) 

S14 Send block ("byte count" 
number of bytes, see S12) 

S15 Finish transfer (wait for I2C 
stop condition) 



To view this state machine in greater detail see appendix 3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 60

S1

Idle state

Event from MODE A requesting 
message transfer causes transition 
to S2. State transition function 
used is 
"STF_M_init_transfer" 

Event from I2C driver indicating 
incoming message (I2C start 
condition detected) causes 
transition to S9. State transition 
function used is "STF_S_busy" 



To view this state machine in greater detail see appendix 3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 61

S2

Init transfer in MASTER 
mode, send "I2C command" 
byte

Event from I2C driver indicating 
successful transmission of 
command byte causes transition to 
S3. State transition function used is 
"STF_M_wt_block" 

Event from I2C driver indicating 
failure causes transition to S8. 
State transition function used is 
"STF_M_abort_transfer" 



To view this state machine in greater detail see appendix 3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 62

S3

Send "transfer address" low 
byte

Event from I2C driver indicating 
successful transmission of byte 
causes transition to S4. State 
transition function used is 
"STF_M_wt_addr1" 

Event from I2C driver indicating 
failure in transmission causes 
transition to S8. State transition 
function used is 
"STF_M_abort_transfer" 



 To view this state machine in greater detail see appendix 3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 63

S4

Send "transfer address" high 
byte

Event from I2C driver indicating 
successful transmission of byte 
causes transition to S5. State 
transition function used is 
"STF_M_wt_addr2" 

Event from I2C driver indicating 
failure in transmission causes 
transition to S8. State transition 
function used is 
"STF_M_abort_transfer" 



To view this state machine in greater detail see appendix 3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 64

S5

Send "byte count" byte

Event from I2C driver indicating 
successful transmission of byte 
causes transition to S6 or S7 
depending on the data direction bit 
in the I2C command already sent. 
State transition function used is 
"STF_M_wt_len". This state 
transition function generates one of 
two events (depending on the data 
direction bit in the I2C command) 
which causes a state transition to 
either S6, using the state transition 
function "STF_M_rd_block" 
or S7, using the state transition 
function "STF_M_wt_block". 

Event from I2C driver indicating 
failure in transmission causes 
transition to S8. State transition 
function used is 
"STF_M_abort_transfer" 



To view this state machine in greater detail see appendix 3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 65

S6

Send block ("byte count" 
number of bytes, see S5)

Event from I2C driver indicating 
successful transmission of byte 
causes transition back to S6 or 
forward to S8 until the "byte 
count" (already sent) reaches zero. 
Each time a transition to S6 is 
performed, the next byte in the 
output block is sent and the "byte 
count" is decremented. The state 
transition function used is 
"STF_M_rd_data". 

When the "byte count" reaches zero 
the "STF_M_rd_data" state 
transition function generates an 
"event_transfer_complete" event 
that causes a transition to S8. The 
state transition function used when 
going from S6 to S8 is 
"STF_M_transfer_complete
". 

Event from I2C driver indicating 
failure in transmission causes 
transition to S8. State transition 
function used is 
"STF_M_abort_transfer" 



 To view this state machine in greater detail see appendix 
3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

  

page 66

S7 

Receive block ("byte count" 
number of bytes, see S5)

Event from I2C driver indicating 
successful receipt of byte causes 
transition back to S7 or forward to 
S8 until the "byte count" (already 
sent) reaches zero. Each time a 
transition to S7 is performed, the 
byte received from the I2C driver is 
appended to the input block and the 
"byte count" is decremented. The 
state transition function used is 
"STF_M_wt_data". 

When the "byte count" reaches zero 
the "STF_M_wt_data" state 
transition function generates an 
"event_transfer_complete" event 
that causes a transition to S8. The 
state transition function used when 
going from S7 to S8 is 
"STF_M_transfer_complete
". 

Event from I2C driver indicating 
failure in transmission causes 
transition to S8. State transition 
function used is 
"STF_M_abort_transfer" 



 To view this state machine in greater detail see appendix 3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 67

S8

Finish transfer (set I2C stop 
condition)

Event from I2C driver indicating 
I2C stop condition established 
causes transition to S1. State 
transition function used is 
"STF_M_ready". 



 To view this state machine in greater detail see appendix 
3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 68

S9

Init transfer in SLAVE mode, 
receive "I2C command" byte

Event from I2C driver indicating 
successful receipt of valid 
command byte causes transition to 
S10. The state transition function 
used is "STF_S_rd_cmd". 

Event from I2C driver indicating 
failure OR command byte received 
but addressed to other CPU causes 
transition to S15. The state 
transition function used is 
"STF_S_wait_for_stop" 

Event from I2C driver indicating 
unexpected stop condition seen 
causes transition to S1. The state 
transition function used is 
"STF_S_ready" 



 

To view this state machine in greater detail see appendix 3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 69

S10

Receive "transfer address" 
low byte

Event from I2C driver indicating 
successful receipt of byte causes 
transition to S11. The state 
transition function used is 
"STF_S_rd_addr1" 

Event from I2C driver indicating 
failure in receipt causes transition 
to S15. The state transition 
function used is 
"STF_S_wait_for_stop" 

Event from I2C driver indicating 
unexpected stop condition seen 
causes transition to XS1. The state 
transition function used is 
"STF_S_ready" 



 To view this state machine in greater detail see appendix 
3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 70

S11

Receive "transfer address" 
high byte

Event from I2C driver indicating 
successful receipt of byte causes 
transition to S12. The state 
transition function used is 
"STF_S_rd_addr2" 

Event from I2C driver indicating 
failure in receipt causes transition 
to S15. The state transition 
function used is 
"STF_S_wait_for_stop" 

Event from I2C driver indicating 
unexpected stop condition seen 
causes transition to S1. The state 
transition function used is 
"STF_S_ready" 



 To view this state machine in greater detail see appendix 
3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 71

S12

Receive "byte count" byte 

Event from I2C driver indicating 
successful receipt of byte causes 
transition to S13 or S14 
depending on the data direction bit 
in the I2C command already sent. 
The state transition function used is 
"STF_S_rd_len" 

The state transition function 
"STF_S_rd_len" generates the 
event "event_read_block" if the 
data direction bit in the I2C 
command indicates a read, 
otherwise it generates the event 
"event_write_block" if the data 
direction bit in the I2C command 
indicates a write. 

The "event_read_block" event 
causes a transition to S13. The 
state transition function used is 
"STF_S_rd_block". 

The "event_write_block" event 
causes a transition to S14. The 
state transition function used is 
"STF_S_wt_block" 

Event from I2C driver indicating 
failure in receipt causes transition 
to S15. The state transition 
function used is 
"STF_S_wait_for_stop" 

Event from I2C driver indicating 
unexpected stop condition seen 
causes transition to S1. The state 
transition function used is 
"STF_S_ready" 



 

 To view this state machine in greater detail see appendix 
3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 72

S13 

Receive block ("byte count" 
number of bytes, see S12) 

Event from I2C driver indicating 
successful receipt of byte causes 
transition back to S13 or forward 
to S15 until the "byte 
count" (already sent) reaches zero. 
Each time a transition to S13 is 
performed, the byte received from 
the I2C driver is appended to the 
input block and the "byte count" is 
decremented. The state transition 
function used is 
"STF_S_rd_data". 

When the "byte count" reaches zero 
the "STF_S_rd_data" state 
transition function generates an 
"event_transfer_complete" event 
that causes a transition to S15. The 
state transition function used when 
going from S13 to S15 is 
STF_S_TRANSFER_COMPLETE
. 

Event from I2C driver indicating 
failure in receipt causes transition 
to S15. The state transition 
function used is 
"STF_S_wait_for_stop" 

Event from I2C driver indicating 
unexpected stop condition seen 
causes transition to S1. The state 
transition function used is 
"STF_S_ready" 



To view this state machine in greater detail see appendix 3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 73

S14 

Send block ("byte count" 
number of bytes, see S12)

Event from I2C driver indicating 
successful transmission of byte 
causes transition back to S14 or 
forward to S15 until the "byte 
count" (already sent) reaches zero. 
Each time a transition to S14 is 
performed, the next byte in the 
output block is sent and the "byte 
count" is decremented. The state 
transition function used is 
"STF_S_wt_data". 

When the "byte count" reaches zero 
the "STF_S_rd_data" state 
transition function generates an 
"event_transfer_complete" event 
that causes a transition to S15. The 
state transition function used when 
going from S14 to S15 is 
STF_S_TRANSFER_COMPLETE
. 

Event from I2C driver indicating 
failure in receipt causes transition 
to S15. The state transition 
function used is 
"STF_S_wait_for_stop" 

Event from I2C driver indicating 
unexpected stop condition seen 
causes transition to S1. The state 
transition function used is 
"STF_S_ready" 



To view this state machine in greater detail see appendix 3 

jump to:
S1  S2  S3  S4  S5  
S6  S7  S8  S9  S10  
S11  S12  S13  S14  
S15  

page 74

S15

Finish transfer (wait for I2C 
stop condition) 

Event from I2C driver indicating 
I2C stop condition detected causes 
transition to S1. The state 
transition function used is 
"STF_S_ready" 



Appendix 1
to see this diagram in annotated form see appendix 2

 

page 75



Appendix 2
to see this diagram without annotations see appendix 1

 

page 76



Appendix 3

page 77



Appendix 4
; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S M F _ M _ w r i t e _ s t o p
 r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ a b o r t _ t r a n s f e r
c a l l m a s t e r _ w r i t e _ s t o p _ e n t r y _ p o i n t
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ i n i t _ t r a n s f e r
 m o v f w x f r _ c m d

m o v w f d a t a _ o u t
 c a l l m a s t e r _ w r i t e _ c m d _ e n t r y _ p o i n t

r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S M F _ M _ i n i t _ t r a n s f e r
r e t u r n

page 78



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ r d _ b l o c k
t s t f x f r _ l e n
b n z m r d b _ 1

m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e

m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
c a l l c l i e n t _ e v e n t _ q u e u e _ w r i t e
g o t o m r d b _ 9

m r d b _ 1
c a l l m a s t e r _ r e a d _ b y t e _ e n t r y _ p o i n t

m r d b _ 9
r e t u r n

page 79



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ r d _ d a t a
m o v f w x f r _ a d d r 1
m o v w f f s r

 m o v f w d a t a _ i n
m o v w f I N D F

i n c f x f r _ a d d r 1
 d e c f s z x f r _ l e n

g o t o m r d d _ 6
g o t o m r d d _ 7

m r d d _ 6
c a l l m a s t e r _ r e a d _ b y t e _ e n t r y _ p o i n t

 g o t o m r d d _ 9

m r d d _ 7
m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e

 m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
c a l l c l i e n t _ e v e n t _ q u e u e _ w r i t e

m r d d _ 9
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S M F _ M _ r e a d _ d a t a
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ r e a d y
 c a l l s l a v e _ r e a d _ c m d _ e n t r y _ p o i n t

r e t u r n

page 80



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S M F _ M _ r e a d y
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ t r a n s f e r _ c o m p l e t e
c a l l m a s t e r _ w r i t e _ s t o p _ e n t r y _ p o i n t
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ w t _ a d d r 1
m o v f w x f r _ a d d r 2

 m o v w f d a t a _ o u t
c a l l m a s t e r _ w r i t e _ b y t e _ e n t r y _ p o i n t
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S M F _ M _ w r i t e _ a d d r 1
 r e t u r n

page 81



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ w t _ a d d r 2
m o v f w x f r _ l e n
m o v w f d a t a _ o u t
c a l l m a s t e r _ w r i t e _ b y t e _ e n t r y _ p o i n t
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S M F _ M _ w r i t e _ a d d r 2
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ w t _ b l o c k
m o v l w e v e n t _ i 2 c _ d a t a _ w r i t t e n
c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ w t _ c m d
m o v f w x f r _ a d d r 1
m o v w f d a t a _ o u t
c a l l m a s t e r _ w r i t e _ b y t e _ e n t r y _ p o i n t
r e t u r n

page 82



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S M F _ M _ w r i t e _ c m d
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ w t _ d a t a
t s t f x f r _ l e n
b n z m w t d _ 1

 m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e

 m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
c a l l c l i e n t _ e v e n t _ q u e u e _ w r i t e
g o t o m w t d _ 9

m w t d _ 1
m o v f w x f r _ a d d r 1
m o v w f f s r

 m o v f w I N D F
 m o v w f d a t a _ o u t
 a d d l w 1
 c a l l m a s t e r _ w r i t e _ b y t e _ e n t r y _ p o i n t

i n c f x f r _ a d d r 1
d e c f x f r _ l e n

m w t d _ 9 r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S M F _ M _ w r i t e _ d a t a
r e t u r n

page 83



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S T F _ M _ w t _ l e n
m o v l w e v e n t _ w r i t e _ b l o c k

 b t f s c x f r _ c m d ,  0
m o v l w e v e n t _ r e a d _ b l o c k

c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  M A S T E R  s p e c i f i c

S M F _ M _ w r i t e _ l e n
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ b u s y
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ i n i t _ t r a n s f e r
m o v l w e v e n t _ b u s y

 c a l l c l i e n t _ e v e n t _ q u e u e _ w r i t e

m o v l w e v e n t _ i 2 c _ s t a r t _ c o n d i t i o n
 c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e
 r e t u r n

page 84



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S M F _ S _ i n i t _ t r a n s f e r
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ r d _ a d d r 1
 m o v f w d a t a _ i n
 m o v w f x f r _ a d d r 1

c a l l s l a v e _ r e a d _ b y t e _ e n t r y _ p o i n t
 r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S M F _ S _ r e a d _ a d d r 1
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ r d _ a d d r 2
m o v f w d a t a _ i n
m o v w f x f r _ a d d r 2

 c a l l s l a v e _ r e a d _ b y t e _ e n t r y _ p o i n t
r e t u r n

page 85



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S M F _ S _ r e a d _ a d d r 2
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ r d _ b l o c k
 m o v l w e v e n t _ i 2 c _ d a t a _ w r i t t e n

c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ r d _ c m d
 m o v f w d a t a _ i n
 m o v w f x f r _ c m d
 c a l l s l a v e _ r e a d _ b y t e _ e n t r y _ p o i n t

r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S M F _ S _ r e a d _ c m d
r e t u r n

page 86



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ r d _ d a t a
t s t f x f r _ l e n
b n z  s t f _ s r d d _ 1

m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
 c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e

m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
c a l l c l i e n t _ e v e n t _ q u e u e _ w r i t e
g o t o s t f _ s r d d _ 9

s t f _ s r d d _ 1
 m o v f w x f r _ a d d r 1

m o v w f f s r
m o v f w I N D F
m o v w f d a t a _ o u t

 c a l l s l a v e _ w r i t e _ b y t e _ e n t r y _ p o i n t

 i n c f x f r _ a d d r 1
d e c f x f r _ l e n

s t f _ s r d d _ 9
 r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S M F _ S _ r e a d _ d a t a
r e t u r n

page 87



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ r d _ l e n
m o v f w d a t a _ i n
m o v w f x f r _ l e n

m o v l w e v e n t _ w r i t e _ b l o c k
b t f s c x f r _ c m d ,  0
m o v l w e v e n t _ r e a d _ b l o c k

 c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S M F _ S _ r e a d _ l e n
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ r e a d y
 c a l l s l a v e _ r e a d _ c m d _ e n t r y _ p o i n t

r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S M F _ S _ r e a d y
r e t u r n

page 88



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ w a i t _ f o r _ s t o p
 c a l l s l a v e _ w a i t _ f o r _ s t o p _ e n t r y _ p o i n t

r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S M F _ S _ w a i t _ f o r _ s t o p
        r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ w t _ b l o c k
 t s t f x f r _ l e n
 b n z s r d b _ 1

 m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
 c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e

m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
 c a l l c l i e n t _ e v e n t _ q u e u e _ w r i t e
 g o t o s r d b _ 9

s r d b _ 1
c a l l s l a v e _ r e a d _ b y t e _ e n t r y _ p o i n t

s r d b _ 9
r e t u r n

page 89



; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  T r a n s i t i o n  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S T F _ S _ w t _ d a t a
m o v f w x f r _ a d d r 1
m o v w f f s r
m o v f w d a t a _ i n
m o v w f I N D F

i n c f x f r _ a d d r 1
 d e c f s z x f r _ l e n

g o t o s t f _ s w t d _ 1

m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
 c a l l s e r v e r _ e v e n t _ q u e u e _ w r i t e

m o v l w e v e n t _ t r a n s f e r _ c o m p l e t e
c a l l c l i e n t _ e v e n t _ q u e u e _ w r i t e
g o t o s t f _ s w t d _ 2

s t f _ s w t d _ 1
c a l l s l a v e _ r e a d _ b y t e _ e n t r y _ p o i n t

s t f _ s w t d _ 2
r e t u r n

; - - - - - - - - - - - - - - - - - - - - - -
; S t a t e  M o n i t o r  F u n c t i o n
;    I 2 C  b u s  S L A V E  s p e c i f i c

S M F _ S _ w r i t e _ d a t a
        r e t u r n

page 90



TBD

(2) breaking down a function into small units that can be processed as background separate tasks

(7) example of two simple state machines interacting. One state machine monitoring a complex 
process, then signalling the other state machine when that process is complete. Think of a clever 
example that cuts down one big complex state machine into two much smaller simpler state 
machines.

(8) explain how work flow is an example of a state machine

(9) explain how a state machine development tool should allow the user to interactively generate 
events and observe the consequences on the state diagram. Show the benefits in term of time saved 
and errors detected

(10) explain why having complex functions that use variables to store state info outside of state 
machine are actually detrimental to state machine (can cause hidden problems and are much harder 
to maintain, document and debug)

(11) show a call graph of all inputs (events) against all states

(12) when is it better not to use state machines

(13) show how continuous execution and  a software state machine are fundamentally similar and 
explain how the state machine just uses groups of instructions between changes of state.

page 91


	Introduction to State Diagrams
	Developing a state machine
	Implementing state machines in software
	Using groups of conditional statements
	Table driven state machine
	Benefits of using a small core dispatcher
	Multiple interacting state machines
	Table driven inefficiencies
	Complete example of a table driven state machine

	Critical event order
	Step by step debugging using a state diagram
	Animation of a real state machine trace

	Reducing multiple states to a single state
	The event queue
	Generating events during an interrupt
	Decreasing interrupt overheads

	Multiple interacting state machines
	Overall system design
	CPU view
	CPU component breakdown
	Intra CPU mode interaction 
	part 5
	Mode A / B Interaction
	I/O Component Description
	VCLK Component Description
	I2C Component Description
	Animated Message Flow Description
	Mode B description

	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	TBD

